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ABSTRACT

A mnnified method of analysis for factorial arrangements in
4 block designs has been developed for arbitrary biock designs. The ;
main results shown here are (1) an easy way to determine the de-
grees of freedom for treatments, (2) a systematic approach to find
a set of estimable effects, and (3) in the factorial case, 8 method
to determine which effects are confounded with blocks or aliased
with other effects.

Sl X

o i

TR TR L AR
" S il L5 s e P e

T

" P

Sl Mt b N L

Preceding page blank

AT

3
I
i
L
b
'
N
v
i it Lt ol 2 sl it b il




AT RS LT - ™S wrche o i ab=b 1N AT Sk B Sk

CONTENTS

e G AR N IR

ABSTRACT + v v v v et oo s ensennnnsonoeneenenneasancsnsessnsssnenes 3
; 1, INTRODUCTION ¢4 vvvvsonconvscrasonsosossnseonsesnnsenasnnse T
3 2, MATHEMATICAL TOOLS ¢ ¢ e s 0 vt vsvetososoanennsavacseasonsnsses 8
; 2.1 Direct Product (DP) and Symbolic Direct Product (SDP) « » v e oo svvevases 8
3 2.2 Generalized Inverse (GI) « e oo e oo vsevssensonsscssesssnnsonsseasse 10
g 3. ANALYSIS OF BLOCK DESIGNS ¢ v o0 setotoocssocooosncesossncnseas 11

3.1 Notationand Model. s v e v o v v evenescearsosorssscessssosnassseese 11
3.2 Connected Designs andthe Rank 0f C.o v v s s s s s vesocevevesoescseses 13
3.3 Disconnected Designs, Missing Treatments, andthe Rank of Co v e v v v v veues 14
4 3.4 Choice of Constraint MatriX. . e seeseeossescsesseoasscsssnsacnss 16
3 3.5 Estimation for Block Des{gns. s ¢ c cosssssecssonscccorsssessssaece 16

4. ANALYSIS OF FACTORIAL EXPERIMENTS IN BLOCK DESIGNS +...cvc0aees 17
4.1Nomuonandeel’.....0.....'.“...l..'l.....“......Q..e 17

: 4.2 Estimation for the Factorial Case for Connected Designs and no Missing
v‘ 3 Treatments.....'.....0...00....QO..0...'0.....'......... 21

]
i
%
gi
-l
§
3
d
3
P
2
s
§
k'
k|
]
¥
A
4
}
5
1
)
f
b
4
]
%
]
i
]
i?
%;
4
i
A
%

f 4.3 Estimation for thu Factorial Case for Disconnected Designs with Missing ;
;. Treatments(zx"‘zz>1)'l.....'.l.l.'.l0....'0...'....'0..'0 23 :'f
4.4 Unestimable, Aliaged, and Confounded Interactions ...cocvvvevsesveees 25
;; 50ComUTA’rIONALpRoCEDURE...CO.Q.....Q..0'0.....00.".‘0'.. 26

60 EXAMPLES LRI I R A A A IR B I B B A R R R A A I IR B R B BN S N 2R B I I B R R Y I B Y 27

REFERENCESOC."!...Q...Cl.OOO'.C...O‘O.D..CC"...O00‘0.0... 42

B 0 o AL Ok bt 0 S L

i AL, ot oA

Preceding page blank

LRI R (U IO | A7 OO S R T ey R Ao
y

L A




1 e oy s ST I R R SR

:
£

i
i_z
H

:
i

:
S
:
£
H
4
i
E
&
:
H
;fZ
=
?
E
=

1. INTRODUCTION

This report is the fifth effort’ 234 using a unified method of analyeis for factorial ai~
-.ementa incorporated into block designs. Four efforts were previously published in various
j rnals,t*2:3:* The fira two papers’'? present the basic theory and give solutions for a wide
class of balanced (hance ¢onnected) block designs. Due to certain desirable properties agsoci-
ated with balanced designs, these solutions can be expressed explicitly and require no inversion
of matrices to obtain the solutions. The third® treats the case of two-way elimination of
heterogeneity. The fourth* treats the case involving unequal number of treatments per block

but is restricted to the case of designs with oneblock orly and to the case of complete factorial
experiments.

This report extends the prior work by providing sojutions for arbitrary block designs.
Included are nonconnected designs in general, the fractional factorial designs, case of miss-
ing treatments in general, and unequal aumber of treatments per plot per each of multiple
blocks. In these cases, the nice properties of balanced designs disappear, and the solutions
to the normal ecquations will sometimes involve matrix inversions for the reduced solutions.
Effective use of partitioned matrices, and their genecralized inverses, is made in theege cases.
In many other cases the coefficient matrix of the normal equations is idempotent; then the

solution to the reduced normali equations is expressed explicitly without requiring formal
matrix inversion.

The main contributions of this paper are: Theorem 1 irom which the rank of the coefficient
mairix of the reduced normal equations can be determined easily (Section 3.3); a systematic
approach to finding the ectimable parameters in the non-factorial case for any block design
(Sections 3.4 and 3.5); and the extension of the results to the factorial case where the confounded

and aliased effect terms are determined in terms of the estimable parameters, (Sections 4.3
and 4.4).

There precbably are no new mathematical results herein, although some of the results are
hard to find in any one place. The known results used by many authors, notably, Tocher,’
Rao,® Zelen and Goldman,” Graybill,® Kurkjian and Zelan,':? Kempthorne,® are collected
together and used to yield a reasonably efficient coraputer program (FORTRAN 1V) to do the

analysis. The program requives for input only the observed data and the generalized incidence
matrix, L, for the design.

Those designs with especially nice properties, of course, could be solved with more ele~
gant methods.!"? Even in these cases, however, a computer program would be desirable for

]Kurkiion, B. and Zelen, M. (1962) A Calculus for Factorial Arrangements Ann. Math. Stot. 33, 609-619.
Kurkijian, B. cnd Zelen, M. (1963) Applications of the Calculus for Factorial Arrangements |. Block and Direct
Product Designs, Biometrika 50, 63-73.
“Zelen, M. ond Federer, W. T. (1964): Applications of the Caleylus for Factorial Arcangements Il. Designs with
Two-way Eliminatior: of Heterogeneity Aan. Moth. Stat. 35, 658-672.

Zelen, M. and Federer, W. T. (1966): Application ¢f the Calculus for Factoriul Arrangements I1l. Anolysis of
of Factoriols with Unequal Numbers of Observations, Sankhya, (A), 27, 383-400.

Tocher, K. D. (1952) The Design and Analysis of Block Experiments, J. Roy. Stot. Soc., Ser B, 14, 45-91.

Raoo, C. R. {1962) A Note on o Generalized Inverse of o Matrix With Applications to Problems in Mathematical
Statistics. J. Roy Stat. Soc (B), 24, 152-158.

Zelen, M, ond Goldman, A, J. (1954): Weak Ceneralized Inverses ond Minimum Variance Linear Unbiosed Estima
tion. J. Res. Nat'l. Bur. Stds. 68B, 151-172.

Graybill, F. A. (1961) An Intrrduction to Linear Statistical Models, Volume I, McGray-Hill, New York.

9Kempthorne, 0. (1952) Design ond Analysis of Experiments, John Wiley ond Sons, New York.
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3 each type of balanced design to do the unpleas.at arithmetic. Howsver, as frequently happens
in practice, the balance of a well designed experiment is inadvertently destroyed at the field
site through loss of data, or failure to follow the test design for various reasons. In these

. situations the expe-imenter need not be concerned with the synthesis and analysis of the re-

1 sulting .*- 3lsn. The data are analyzed as taken. The computer output lists the complete

3 analys. * * variance together with the estimates of the treatment parameters, the associated
~ nriance~« Hvariance matrix, snd the aliasing and confounding where appropriate.

™

Following the introduction the paper is divided in 5 parts. Section 2 contains, for complete-
ness, some mathemstical toola to be used in the sequel. Section 3 gives a short review for the
analysie of biock designs to set the stage for J-e main results given in section 4. An outline
of the entire comnutationa! procedure is given in section 5. Section 8 gives some examples.

1 2. MATHEMATICA™. TOOLS

7 :t4g gection we summarize some notation and operations which are used in the secuel.
Jha o 0f L ing gpecia. matrices will be used:

:; colimn vector of dimension m, with all elements unity
J, =1 1 asquarc matrix of dimension m, with all s,ements unity

R

I, the unit matrix of dcimension m
M =m1l ~J
1 1 1 )
0, a column vector of dimension m; with all null elsments

2.1 Direct Product (DP) and Symbolic Direct Product (SDP)

e ke it P Attt 80 SN

Let A = (a;; ) and B = (b, ) be rectungular matricés of dimensions m xnand p x q,
respectively. Then the direct product (DP), or Kronecker product, of A and B will be written

A x B and is given by

SI‘B 8128 o aln BT

ST P T T T SV )

Ay B aypB - a,B

AxB=

o

|%mB 8,28 " Ay B

with dimensions mp x nq. Ingeneral, if A;, (=1, 2, .., k), are m;, xn, matrices, their
joint direct product, A; X A, x ... X A will bave dimensions

k k
l I mi % | | ni
1=} i=}
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For arbitrary square matrices, A, B, C, and D, the direc* product operation has the
following basic properties:

(AXB)xC=AX(BxC)

(A+B)xC=(AXxC)+ (BxC)

¢ X A=A X c = cA for an arbitrary scalar ¢

(A XB) =A' xB'

(A xB)y! =& x B! providing the indicated inverses exist

(A X B) (C x D) = AC x BD provided the indicated products are conformable,

The symbolic direct product (SDP) operation will be denoted by © . Let
a = [a; (1), a; (2% - -+, q (mi)]
be row vectors for i =1, 2, . . ., n. Then the SDP of u, and a is defined to be

apq (11)

34 (12)

(3, (D] [ag (D] [a,q (Im

8,8 a5 =18, (2) [9]ag(2) | = |ag, (2)

| % (M) |_aq (mg) pq (2mQ)

"o q (Mg ™q)

The extension of the SDP to more than two vectors is straightforward. The SDP is an operation

on symbolic quantities, but not on numerical quantities.

s n'm\n\‘m‘xn,; 3
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? As an examole, let m, = m, =2, Let g a (1j) denote the effect of a two-factor interaction
3 term when experimental factors A  and Aq are at levels i and j, respectively, Then &, @ a,
will be used ia the seyuel to order the elements of the two factor interaction as

fap ® nq]’ = [apq (11 a, . (12) a5, (21) a5 (2.

Furthermore, the SDP will be used to order the treatment-combinations in a factorial
experiment. For example, agssume a two-factor expsriment with factor A, at two levels and
factor A, at three levels. Let | =(12) and ¢, = (2 2 3) be vectors whose elements denote
3 the levels of the factors. Then the SDP

LIS b Lo

4 ['11“’
12 |
1 1 13
\19 ‘2_' \9 =
o/ | 2} |2
3/ |22
| 23]

gives the ordering of the six treatment-combinations

2.2 Generalized Inverse (GI)

The generalized inverse has received much attention recently, S 7+ 10 11.12.13 1t jg par-
ticulariy useful in sclving singular linear systems of equations. The G1 of an arbitrary matrix
C of dimensions m X n is denoted by C* and is the matrix which satisfies the relutions

c:ccc
c=cc'c
ey - ¢t e

ccy=¢cct

6Racs, C. R. (1962) A Note on a Generalized Inverse of o Matrix With Applications to Problems 1n Mathematical
Statistics. J. Roy Stet. Soc (B), 24, 152.158.
Zelen, M. and Goldmen, A. J. (1964): Weck Generalized Inverses and Minimum Voricice Lineor Unbrased Esti-
mation. J. Res. Nat'l. Bur. Stds. 688, 151-172.
Ben-Israel, A. and Wersay, S. J. (1053), An Elimination Method for Computing the Generalized Inverse of an Ar-
bitrory Complex Matrix, Jour. Assoc. Comp. Mach. 10, 532-537.

”Grewlla, T. N. E. (1961) The Pseudoinverse of ¢ Rectongular or Singular Motrix and its Application to the Solu-
tion of Systems of Linear Equations. SIAM Review, 1, 38-43.

nPenrose, R. (1955) A Generolized Inverse for Motrices. Proc. Camb. Phil. Soc. 51, 405413,

*YSearle, S. R. (1965) Matrix Algebra for the Biclogical Sciences, John Wiley and Sons, New York.
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The reduced normal equations used here will always be singular, and, hence, the GI will
be used to obtain their go.ution. In many cases, the coefﬁcient matrix C of the normal equa-
tions is idempotent, (C” = C), or quas(-idempotent (C =AC, A a scalar). Inthese casss, it is
recdily verified that the GI of C is given by C* = /A2, For the relatively infrequent cases
where C is Lot quasi-fdempotent, the GI is computed using the method of Een-Israel.

3. ANALYSIS OF BLOCK DESIGNS

3.i Notation and Model

Consider & design involving a fraction or all of v treatments applied to b blocks. Let
block j contain k; treatments, j = 1, 2, . . ., b and let treatment i be replicated r; , i = 1, 2,
. « « V, times throughout all blocks. For the classical balanced or partially balanced incom-~
plete designs k; and r; are constants over all i and j. There is no such restriction herein,
Furthermore, to introduce unequal number of treatments per plot per block, let <, denote
the number of times treatment { eppears in block j. Hence we will have

- 7

kj %j

121

and

b
r. = ’:
i Z ij

i=1

Let y; 5 denoto the yield of the kth replication of the ith treatment in the jth block. We will
assume the usual fixed effects model.

yijlt:"‘ti‘bj"'ij'x‘ 11,2 ...,V

j=1,2 «--..b {1)
"ij

where t; is the fixed effect of the i'" treatment, b, the fired effect of the i*" block, . the
general etfect, and the ¢ ijx are independent random variables. (The mixed effects model,
using the unified met.hode herein, has been considered, although it has not been incorporated
in this paper.) For ihe sake of tests of significance it will ba assumed that each <.,  is dis-
tributed normally, N(0, -2). We further assume that effects t. and b, are subject to the

restraints
T t Yy -0,
s ! Z }

-1 1-1

I“Kurlqmﬂ, B., 11960) General Theory for Asymmetricol, Confounded, Factorial Experiments, TR-829 Horry Diamond
Labs., Washington, D.C.
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Let N = (n;;) be the (v X b) incidence matrix of the deaign where n;; =0 or 1 depending
on wheher the it" treatment is absent or present in the j* R block. Let L=(4;; i) = (g % )
denote the generalized incidence matrix. Then the least squares estimates of the treatment
effects can be obtained in the usual way, by minimizing

£

v b iy
- 2
S= E E g ng; Wik = &=t =by)
i=1 =1 k=1

with respect to ¢, bJ and z. Eliminating bj and u from the resulting normal equations, one
obtaing the reduced normal equations, C t = Q, where

Q=T-LK'B C=R-LK'L’
b {l.
T=(MT. - T T =Z iy Yijk
j:l k=1
£ .
v 1)
ALK
B' = (B, B, « + - By Bj = 2_:"” Yijk (2)
1=] k=1

b
R=diag (ryry * * * 1), ri:.Z:»Eii

1=1
3 v
3 K=diag (k kg« * “ k) k;= {ii
E 1=
The elements of C can be expressed as
3 b
A Cii= r. - &2/k i=1'2'.--'v
i=1

)

cisz-Z:of,ij{si/ki‘ i,s=12 **"v,iZs

As will be shown in gsection 3.5 the solution to the reduced normal equations, ct= Q, is given
by

t=C'Q 4)

12
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where C* is the generalized inverse of C. It can easily be shown, using the expressions (3),
that the rows and columns of C sum to zero. Hence the rank of C is always less than v. As
will be shown in section 3.3., the concept of connectedness of the design will be useful in de-

termining the rank of C, and, equivalently, the degrees of freedom associated with the treat-
ment sums of squares.

Furthermore it is readily verified that Var (Q) = C o2 so that the variance-covariance
matrix for the treatment effects is given by
Var (t) = C* var (@) ¢* = C* o2
The sums of squares due to treatments can be expressed as
SS(ty=t'Q=t'Ct=(t) (v(t)' (t)o2

Letting Y = (n;; ¥;;x ) be the vector of observations, w the total number of observations,

v b
DPNE
= 1=

and G the sum of all the obgervations, i.e.,

ie.,

v b £‘j
G = E E E nij yijk.
1=] =} =1

the analysis of variance table can be expressed>-® as

Source of Variation Sums of Squares Degrees of Freedom
Treatments (adjusted for blccks) tQ Rank C
Blocks (unadjusted) B'K'B-Gc¥Yw b-1
Error YY-tQ-BK!B w-Rank C-b
Total Y'Y - G¥/w w-1l

3.2 Connected Designs and the Rank of C

A connected design can be defined as follows. Two blocks, b; andb;_, are said to be
connected if they contain some treatment in common. A third bloclc, bi , 713 said to be
3

s Lol a LT

5Tocher, K. D. (1952) The Design ond Analysis of Block Experiments, J. Roy. Stot. Soc., Ser B, 14, 4591,
Kempthorne, 0. (1952) Design and Analysis of Experiments, John Wiley and Sons, New York.
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connected to both of these blocks, if it has at least one treatment in common with either of the
blocks bix orb; 2° All blocks connected in such a manner are said to form a set of connected
blocks. If all blocks in a given design, involving all v treatments, are connected through such
a chein of common treatments, tho design is said to be connected and to consist of one set of
connected blocks, S = (b, by, . . . b,) where elements of S denote the block labela.

i i P PR L

For connected designs with no missing treatments it is well known® that the rank of C is
v - 1, That is, for connected designs it is readily shown that one can construct (v ~ 1) lineariy
independent relationships betweer the treatment parameters. Hence the rank of Cisv -1,
s Conasequently, the one coastraint

Gl o 0

izl

irherent in ghe model, is all that is required to get a unique solution to the reduced normal
equations Ct = Q.

Using the calculus for factorial arrangements, the analysis of balanced (hence connected)
incomplete block designs is particularly elegant and simple!-2, The main purpose of this paper
is to extend the basic results of Kurkjian and Zelen to the case of disconnected designs.

3.3 Disconnected Designs, Missing Treatments, and the Rank of C

‘When all the blocks are not connected via a chain of common treatments, the design is
said to be disconnecied. In this case there will be more than one set of connected blocks. For
example, the desizn with incidence matrix

is disconnected since block 2 has no treatment {n common with blocks 1 and 3. Since hlocks
1 and 3 are connected via treatment 1, the design N is said to decompose into two sets of con-
nected blocks: 8, = (b, by) and 8, = (b,).

T

In general, the determination of the number of sets, z,, of connected blocks is a trivial
task, obtained by inspection of the incidence matrix of the design.

£ il el o

As the following theorem shows, the number of distinct sets of connected blocks, z., and
the mumber of missing treatments, z,, in the design will determine the rank of the coefhcient

Lt kit &4,

]Kurkiion, B. ond Zelen, M. (1962) A Calculus for Factorial Arrangements Ann. Math. Stat. 33, 609-619.
Kurkjien, B. and Zelen, M. (1963) Apolications of the Calculus for Factoriol Arrangements |. Block and Direct
Product Designs, Biometrika 50, 63-73.

5Tc»cher, K D. (1952) The Design and Analysis of Block Experiments, J. Roy. Stat. Soc., Ser B, 14, 4591,
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matrix C of the reduced normal equations and, hence, the total number of constraints required
to achieve a unique solution to these equations. Moreover, rank C also yields the degrees of
freedom associated with the treatment sums of squares in the analysis of variance table.

Theorem 1. For any block design, the rank of the v x v coefficient matrix C of the re-
duced normal equations Cf = Q, is v - 2y =7, where v is the total number of treatments in
the experiment, z, is the number of sets of connected blocks, and z, is the number of treat-
ments for which no observations were taken during the experiment.

Proof: Without loss of generality, one may assume that the first q, treatments are as-
sociated with the first get of p; connected blocks, the second q, treatments with the second
set of p, connected blocks, and the penuitimate q., treatments with the z}" setofp z,
connected blocks, Moreover, let the last », treatments be those missing in the experiment.
This assignment could be achieved through appropriate relabeling of treatments and blocks.
With such a rearrsngement, it follows directly from the definition of connected blocks, that
the generalized incidence matrix L can be written in partitioned form as:

—

[Liayxpp) O(ayxpp - Oqayxp,)

0 (G x Py) Lp(apxpy) * - ¢ n(q2‘<le)

0 (a,, x Py) 0(q, xpp) " " - L, (9, *P;)

0(zyxpy) O(zxpy) * ° 0(22xpzl)

where the dimensions of each of the eleame.:: of L is given in the parenthesis. Clearly then,

and the (v x v) coefficient matrix, C=R - LK }L’, cen be written in partitioned form as the
diagonal matrix:

C=diag (Cl (qyxa) Cy(agxqy) * * * C,, (qz‘ x qz‘) 0 (z,x 22)]

In accordance with section 3.2, the vank of each ., k = 1, 2, . . ., 2¢, 18 (q) - 1), since each
partition is associated with a set of connected blocks. Hence, it follows that
it
RankC:Z (G -1 =v-z,y-2.
k=1

which completes the proof.
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Since v, z,, and z, are obtained almost instantly by inspection of the incidence matrix of
any arbitrary f)lock design, the number of estimable treatment parameters and, hence, the de-
grees of freedom associated with the treatment sums of squares is reduced to the trivial cal-

culation v - zy ~ 24,

3.4 Choice of Constraint Matrix

To achieve a unique solution to the normal equations, Ct = Q, where rank C = v - 2y = 2y
we will need (z, + z,) additional independent relationships between the treatment effects, In
this paper we obtain these relationships by adopting the convention that the sum of the treat~
ment effects associated with each set of connected blocks is zero, i.e., each treatment param-
eter {8 expressed about the mean of the effects associated with that particular set of connected
blocks. Moreover, for each miscing treatment in the design, the corresponding treatment ef-
fect will be assumed expressed about its own true value, hence, assigned tho value zero.

This convention i8 quite commonly used by other investigators although it may not be ex~
plicitly stated in their publigshed works.

With the treatment labeling as given in theorem 1, this convention can be expressed mathe-
matically as the solution to U’ = 0 where U'is the ((z, +2,) xv] matrix

U’ = diag (1;‘l B, o 1;11 1,2) @)

1t follows immediately from the proof of theorem 1 and from the fact that the rows and columas
of C sum to zaro, that U'C = 0, Moreover, it is obvious that

5
det 'uy=] [ q

121

and, Lance, is not zero. In general, U’ can be written or inspection of L.

3.5 Estimation for Block Designs

For the constraint matrix U*, with properties U’C = 0 and det (L'U) # 0, the solutions

to the augmented normal equations
C U\ /[t Q
= (6)
U’ 0o/ \0 0

7Ze|en, M. and Goldman, A. J. (1964): Weck Generalized Inverses and Minimum Voriance Lineor Unbiosed Estimo-
tion. J. Res. Not'l. Bur. Stds. 68B, 151-172.

can be shown to be ’
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t=CcQ (7

where C' is the GI of C. Fortunately, for many designs, C has the property that c?=xc
where A is a scalar constant. In such cases the GI of C is readily verified to be C* = C/ A2,
The digital program developed for this analysis checks the coefficient matrix C for this
idempotency property at the outset. Wheu C is not tdempotent, then the GI is computed using
the method of Ben-~Israel and Wersay. !°

The results of section 3 are sufficient for the analysis of experiments involving simple
treatments applied to any arbitrary block design, balanced, connected, or not. The next sec-
tion extends the results to the case of experiments involving factorial treatment-combinations
applied to general block designs.

4. ANALYSIS OF FACTORIAL EXPERIMENTS IN BLOCK DESIGNS

4.1 Notation and Model

Consider now a factorial experiment involving n experimental factors, A, where factor
A, appears at m_ levels,8=1, 2, .. .Ln. A particular selection of levels for each factor,
i=(y {9 . +.1,), will be termed the {*" treatment-combination, i =1, 2, . . ., v, where

n
V=| |l ms.

s=]1

Leté; =(1,2, ... m,) be a vector whose elements denote the levels at which factor A, ap-
pears. Then the SDP, 4, e 6 ®+..00 ,8 column vector of dimension v, will be used to
label and order the v di erent treatment-combinations. For example for two factors each at
two levels, we have the vector of four treatment-combinations given by

11

, <1> <1 12

€06, = [5) =

17727\, 2 21
2|

Hence treatment 1 is composed of the first levels of each of the two factors A; and A, etc.
Treatment { is the element fi the i*™" row of 6,06,,1=1,2, 8, 4.

These treatments then are applied to any block design to estimate the effects of the ex-
perimental fectors acting alone or in interaction with other factors. For this purpose let
a, = (a, (i,)) denote a row vector of length m ; whose general element a (i,) reprezents the
effect of the experimental factor A_ at level {,. Moreover, leta_ (i , 1,) denote the effect of
the two factor interaction associated with factore A and A‘ at levels ir and ls. respectively.

loBen-lsroel, A. and Wersay, S. J. (1963), An Elimination Method for Computing the Generolized Inverse of an Arhi-
trary Complex Matrix, Jour. Assoc. Comp. Mach. 10, 532-537.
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3
; Then the vector
3
3 [a,@a)’ = (a,q (11). 8, (12), +--a  (1m), a2, (21), ... a (2m), ...
E A (M b, ... apg (Mp ms)]
E
&
? digplays the m _m  two-factor interaction parameters associated with the experimental
A factors A and A_.1.2 Likewise, [ai ® a i, Qs ® ai] is a row vector displaying the
1 )
P
A | | m.
: 1
; interaction parameters associated with the p factor interaction A, A, ...A . Clearly,
3 there will be 2" - 1 vectors containing ! 2 P
3 n
(1+m) -1
3 i=]
3
: such parameters in all. It is quite common in practice15 to express the treatment effects,

t;, in terms of these main effect and interaction parameters as

n

t =Z 8 (is) +Z Z g (ir‘ is) teeevap g (i i2‘ cr in)'
s=1 1Ss<rsn (8)
i=1, 2 v
These relations can be written! in matrix form as
11}
t Z Z (ay (o)) * 8, ((0)) % - « - * &, (@)} ©
k=1 ag+. 1 =k

1Kurkiion, B. and Zelen, M. (1962) A Calculus for Factorial Arrangements Ann. Math. Stat. 33, 609-619.
2Kurkiiun, B. And Zelen, M. (1963) Applications of the Calculus for Factorial Arrongements I. Block ond Direct
Product Designs, Biometriko 50, 63-73.
Zelen, M. (1958) The Use of Group Divisible Designs for Confounded Asymmetrical Foctorial Arrongements, Ann

Math Stat. 29, 22-40.
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where
a; if o =1
ai((ai))=
1 if a;=0
8i®ai if aizaj=l
\ 8 ((¢)) %8 ((¢,)) = |a;x 1; ifa;=10a;=0
lixaj ifai=0.aj=l
lixlj ifaizaj=0-

In the starred operations in eq. (9) the products a; x a i anda; © 1 ; are not defined and are
termed inadmissible products.

When admissible direct and symbolic direct products both appear in eq. (9), we adopt the
convention that DP's are formed first and followed by the SDP's. For example ifn = 3,
m; =my=m3z=2, a; = az=1, a, =0, we have

a3 ((29)) * 3,5 ((a,)) * a3 ((a3)) = (8, x 1,) ® a3

a, (1)

a; (1) 1 a, (1) a, (1) a3 (1)
= x [] = ®
a; (2) 1 a3 (2) a; (2) a3 (2)

a, (2)

3,5 (11)]
a;3 (12)
a;5 (11)
8,3 (12)
- a2
8,5 (22)
a4 (21)
213 (22)_

1t is easy to verify that this operation is associative. These interaction parameters are no.
linearly independent and are teken to satisfy the linear relationship that, for any set of msin
effect or interaction terms, the sum over the levels of any single factor is zero. In matrix

19
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form these constraints can be written' /
1, a = s=1, 2, . n {
l",><Is O, rns=12...,n ;
fa, © 3, = ‘E
Al
| 1% 1 0, r<s
;
(10) 3
1 x Ipx x 1, 0yx Ogx « . . x 0, 3
leléx...xln 01x03><...><0n 3
(ay0a,0...08])= .
)
3 A
’i’ \ lelzx...xlr" 01x02x...x0n_1 k.

1t is easy to show that for connected designs with no missing treatments (z, =1, z, = 0) there
will result

2 e

i (m,-1)+ZZ(m,-1)(ms-1)+...+'[£|'_(mi_1)=v_1

s=1 r<s i=}

linearly independent interaction parameters. Also, it is well known (section 4.2) that these
3 (v-1) Lnearly independent parameters are expressable as linear combinations of the elements
of t which are obtained from the reduced normal equations Ct = Q. For the case where

z, 4z, >1, the further constraints U’'t = 0 on the t parameters will also have to be imposed
on the (v-1) interaction parameters.

Al mt b B AT, s 1 b b W e s 0 A P € pea el S A D E S e o rh >

]Kurkiion, B. ond Zelen, M. (1962) A Calculus for Factorial Arrongements Ann. Math. Stat. 33, 609-619.
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4,2 Estimaticn for the Factorial Case for Connacted Designs

and No Missing Treatments

This case has been treated fully 1.2 using the basic method of this paper. The main re-
sults are restated here for completeness and to set the stage for some results in section 4.3
below. LetX = (x; X5 . ..X,) be a vector representing an interaction term where the ele-

ment x, is defined as

x; =1 if factor A; 18 present in the interaction X

i=1,2,...,n. (11)

x; =0 if factor A; is abgent in the interaction,

Clearly, there will be 2" - 1 such vectors. The vector X = (0. . . 010 . . . 0) with a one in the
rth position and all other elements zero denotes the maineffect of factor A,,x=(0...010,.,C10
« + « 0) with elements in the rth and sth positions equal to one and all others zero, denotes the
two~factor interaction A A,, etc., X = (11 . . . 1) with all elements unity denoting the n-factor
interaction A;A, . . . A, . For the purposes of this paper, the vectors X,,1=1,2,...,2" -1
will be ordered as follows: All vectors denoting main effect terms first, those dencting two-
factor interactions second, etc., with the n-factor interaction term last. Within each of these
groups, (i.e., interacstion terms) the vectors are ordered lexicographically. For example, if

n = 3, we will have 2 - 1 = 7 vectors in the following order: (100), (010), (001), (110), (101),

(011), (111).

Now let

a(X):at‘@azze...@a‘".in:p (12)

denote the effect of a particular p~factor interaction term where a:* =a, ifx =1 and where
8; is suppressed on the right-hand-side of eq. (12} if x; = 0,

As shown by Kurkjian and Zelen,! the minimum variance unbiased estimator for a(X) is

given by

B =MX) t/v=MX)C*Q/v (13)

where

M(X)=M:1xM;2x...xMx"

n
=M =m I - g if x; =1

=1 ifx =0

lleziitm, B. and Zelen, M. {1962) A Colculus for Factorial Arrongements Ann. Math. Stat. 33, 609-619.

Product Designs, Biometrike 59, 63-73.

2Kurkiion, B. ond Zelan, M. (1963) Applicotions of the Calculus for Factorial Arrangements I. Block and Diruct
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Mcreover, it follows directly that
Var [&(X)] = M (X) ' M (X)* 0Z/v? = £(X) 22, where
(14)

X)) - M(X) CT M X)) /v2
Likewise, for different interaction termg X, and Xj s

Cov (& (X)), & (X)) = M (X;) C" M (X)) o¥2. (15)

Using a resuit given by Rao® and Zelen und Goldman; the sums of squares associated
with the interaction term X is givea by

SS(a (XN =2a'" (X) [Vara (X))t 8 (X) 02 = 3' (X) = (X)* & (X). (16)

Under the null hypothesis of no interaction effect, S$(a(X)) is distributed as a chi-square vari-
ate with degrees of freedom equal to the rank of Var [&(X)] .

If the desiga is orthogonal (i.e., Cov [a(X; }, a(X;)] = 0 for all , J, i # j), then it is known
that

SS(t)y=t'Q= Z 8S [a (X.)]. a7

If the design is not orthogonal then the SS(a(X;)) are not additive. However, as shown by
Graybﬁl? each quadratic form, SS{(s(X;)), ie statistically independent of the error sum of
aquares. Herce, tests of significance based on the F distribution are still valid.

The analysis of variance table is given by

Ras. C. R, (1962) A Notv on o Generalized Inverse of o Matrix With Applicatiors to Problems in Mathamaticel
Stotictics. J. Roy Stat, Soc (B), 24, 152-158.

7Zelon, M. ard Goldmoan, A. J. {1964) Weak Generalized lvursas and Minimum Voriencs Linear Unbiosed Estima-
tion. J. Res. Mat'l. Bur. Stds. 688, 151-172.

8Gmyhill, F. A. (1961) An Introduction to Linear Statistical Mudels, Yolume 1, McGray-Hill, Naw York.
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Source of Variation Sums of Squares Degrees of Freedom
X, ss(a(x,)) Rank 5 (X, )
X, ss(a(x,)) Rank 5(X,)
sS(a Rank $(X_,
oy ( (in_l »n (X2 -1 )
Blocks (unadjusted) B'’K"1B - G¥w b-1
Error YY-tQ-BK'B w-Rank C~b
Total Y'Y-G/w w-1l

4.3 Estimation for the Factorial Case for Disconnected Dosigns with
Missing Treatments (z; +z, > 1)

As indieated in section 3.3, for the general case when the design is not connected or only
a fraction of the treatment-combinations are tested, the rank of the coefficient matrix, C, of
the reduced normal equations is v-z;-z,. In this case one must select a particular set of
V-2, -z, parameters for which a unique solution to the normal equations will exist. In this
paper the selection is made as follows. First eliminate those parameters that are dependant
as a consequence of the basic constraints (eq. 10). This is done by eliminating all but the
(m; - 1) lowest level parameters of the main effect vectors, a(X;), associated with ibe ex-
perimental factors A;,i=1, 2, ..., n; all but the (m; = 1) (m ;- 1) lowest level parameters
of the two-factor interaction vectors associated with experimental factors A; Aj, ... andall

but the
n
I l (m, - 1)

i=]

lowest level parameters belonging to the n-factor interacticn A A, . .. A,. Hence, all but

(v - 1) perameters are eliminated. Second, (z; + z, - 1) of these v - 1 parameters must be
eliminated because they can be expressed as linear functions of the remaining (v - z; ~ z,)
parameters through the relationships resulting from the constraint equation U't = 0 of section
3.4. One chooses the (z) + z, - 1) parameters to be those which are unestimable (as defined
in section 4.3 below) or those associated with higher order interaction terms.

To clarify this parameter selection scheme, and to set the stage for an efficient compu-
tational algorithm for ihe estimation problem, it is convenient to introduce the fcllowing

quantities.

Let a derote the universal vector, of dimension

(1 +m) -1,

ie]
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containing all the main and interaction effect parameters,

a' = {a’' (X)) a'(Xy) ...a (X ). a8)

2"-1

where tha interaction vectors, X;, are ordcred as indicated in section 4.2. Similarly, let M,

of dimension
i I (1em)=-1xv,

be a matrix made up of the corresponding M(X; ) matrices, i.e.

= W (%) M(Xp) ... M (xz'”--l)]'

Nov let 3 denote the vector of v - 1 slements remsaining after alimination of the parameters
that are dependent because of the basic constraints of eq. (10), and let M be the matrix con-
sisting of the curresponding rcws of M. Thus, we have for reference

a=[(aX) aHX)...d Koo N,

= (X))  M(Xp) ... WX

an_ 1)]

Leta’ = [a’ (xl) 2 (X, 2) c..8’ (X;_ )] denote the vector containing a total of v - z, ~ z,
parameters that remain after the further elimination of parameters in 3@, through application
of the constraint equation

n

s*1 Sa;ms

Removing the cor. saponding rows of M thers results

The vector a now contains the v - 2, = Z, linearly independent parameters which permit un~
biased minimum variance estimation and, hence, are termed estimable parameters in the
standard sense8 In this paper elements of @ will be termed independent parameters. Elements

BGmybill, F. A. (1961) An Introduction to Lineor Stotisticcl Models, Volume I, McGray-Hill, New York.
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of a that do not appear in & will be  termed dependent parameters. The interaction X, ,
j=1,2, ... 8, i8 represented in 2 If at least one element of a(x, ) i8 a mamber of 3. ' Suck
interactions will be termed estimabie or unestimable in the sense’described in the next sec-
tion. The original singulay system of normal equations has now been reduced to a non-singu-
lar system of rankC=v -z, - z, and, hence, ylelds the following stancard quantitiez as
solutions.

ol

)
)

cov(i(xi )% (%,) - ﬁ(xi”)c‘ R A RAGRIEE (29)
)

The analysis of variance table is given by:

Source of Variation Sums of Squares Degrees of Freedom
Xi, SS(a(X; )) Rank T (X; )
X, Ss@aX » Rank T (X. )
12 12 2
Blocks (unadjusted) BK™!B- G¥Yw b-1
Error YY-tQ-BK'B w-Rank C-b
Total YY - G¥w w-1

4.4 Unestimable, Aliased, and Confounded Interactions

The theory of confounding and aliasing is easy to apply for the case of 2" designs. How-

ever for general designs the determination of such effects is quite difficult. The literature in
many cases identifies the aliased and confounded interactions without giving the mattematical
foundation for the determination. In this paper the definition of such effects {s based on the
linearly independent, bence estimable, parametars in the solution to the normal equations, i.e.
the elements of a in section 4.3

Consider an effect vector 8(X;) associated with the interaction X
The following definitions will be used to characterize its e.timablllty.

3=1.2’oco’21 "11

25

N,

e liatton (i

e i, N

WAV R

NCLTF

v Adbard Wk

el ot P

N s A, %




Definition 1. Estimable and Urestimable Interactions

If all elements of a(X,) belonging to a are also in a, the interaction X, is termed estim~
able. If some (or all) of f%e elements of a(X g) do not belong to @, then the interaction X, is
said to be partially (or totally) unestimable. Some wunestimable interactions can further be
classified as aliased or confounded.

Definition 2. Aliased Interactions

An interaction X; will be termed an alias of a lower order, at least partially estimable
interaction X, , if at least one dependent effect pazameter agsociated with X is linearly de-
pendent on at least one independent effect parameter associated with X, . It should be noted
that this definition allows partially unestimable interactions to be aliased with more than one
lower order interaction.

Definition 3. Confounded Interactions

If for the interaction X gt
(1) the effectvector a(Xﬁ) contains only dependent parameters, i.e., has no elements in &, and

(ii) each of these dependent parameters is not linearly related to any of the independent
elements in a, and

(i) b> 1,

then Xz is said to be completely confounded with blocks. If b =1, then X_ is said to be com~
B
pletely unestimable.

Definition 4. Partially Confounded (Unestimable) Interactions

If the effect vector a(X ) associated with the interaction X, contains dependent elements
that are linearly related only to its own independent elements, then X , is said to be partially
confoundod with blocks, provided b> 1, Ifb=1,X 5 is said to be pa.rglally unestimable.

5., COMPUTATIONAL PROCEDURE

The computational procedure can be summarized as follows:

Step 1. Given the generalized incidence matrix L and the vector of observations, Y = LA
compute C end Q (cf. section 3.1), o
Step 2. Compute the generalized inverse C* and obtair the solution to the reduced normal equa~
tions, i.e. t = C*Q (cf. section 3.5).

Step 3. By inspection of L determine z;, and z, and compute rank C =v ~ z, - z, (cf. section
3‘3)‘

Step 4. Compute the analysis of variance table as indicated in section 3.1.

For factorial experiments, the following additional computations are made. The treatment
combinations and the rows of L must be labeled and ordered in accordance with section 4.1.
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i
%

E ; g
%o — s
é g Step 5. Compute the main and interacticn effect vectors 3.(15(i ) = MX;) t/v and form aX;) and ‘j
- MX;)1=1,2,.., 2" -1 (cf. section 4.2). Ifrank C=v -1, get 4(X;) =a(X; ) and M(X;) = §
< M(X; ), and proceed to step 9. 4
§
§ Step 6. Construct, by inspection (cf. section 3.4) the constraint matrix U’, of dimension ;
E ; ‘ (2, + z;) X v, relate the interaction parameters to the treatment-combination parameters: (cf. %
: f eq. (9)), and determine the constraints on the interaction parameters due to the application of ;
3 U't=0. ,§
% = - ‘<
3 Step 7. Form &(X; ) by eliminating from (X;),1=1, 2, ..., 2" ~ 1, those interaction param~ :
- eters equal to zero or those of highest order in the constraints determined in step 6. Similarly, 3
4 ’ form M(X; ) by eliminating the corresponding rows of each M(X e ;
ﬁ Step 8. Determine the aliased or confounded effects, if any, in accordance with definitions in
; section 4.4. :;
* Step 9. Compute the sums of squares and degrees of freedom for those interaction terms which ;
'{ have at least one parameter in 3 as indicated in section 4.3. The block, error, and total sums g
; of squares and degrees of freedom are given in the analysis of variance table of section 4.3. If ’1
;1 the design is orthogonal, 3
: §
: sS . = =t'q
Js b)) scoeo ;
> J-l \1
‘%
3 6. EXAMPLES ‘
: —_— :
In this section, we give an arbitrary example to illustrate the notation and computational q
procedure throughout. Then we outline solutions, using the methods of this paper, for two :1
examples published by other investigations,16+17 |
,j‘ Consider a two-factor experiment with factor A, appearing at m, = 3 levels and factor :
: A, at m, = 2 levels. In accordance with section 4.1, the treatment combinations are labeled
:
;’ Treatment Treatment
g( Combination Label
3 11 1
] E;‘ 12 2
%; 1 ( 1 21 3
% ' 2 ® 2 = 22 = 4
3 31 5
%ﬁ 32 6

léDovies, 0. L. (1967) Design and Analysis of Industrial Experiments, Hafner Publishing Co., New York.
Zelan, M. (1964) Applications of the Calculus for Factorial Arrangements [l: Unequal Numbers in the Analysis
of Variance, MRC Tech. Summary Report 411, U. S. Army Math Res. Center, Univ. of Wisc.
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Suppose the originai test design was, inadvertently, not executed as planned, and five of the
v = 6 treatments were applied to b = 3 blocks with generalized incidence matrix,

A G e ik 'a‘mﬂ‘\u\

OO OO KHN
QO LHDO
o OoOOOQ

What effects can now be estimated, given this poorly executed design, and with what efficiency ?
From this incidence matrix, one determines by inspectionthat R=diag (2 1 1 3 1 0), K=
diag (3 4 1), the number of sets of connected blocks is z; =3 and the number of missing
treatments is z, = 1. Hence by Theorem 1, the rank of the coefficient matrix C, will be
v-z,~-2, =2, Computing C=R - 1K™ L' one gets after reduction

2/3% 0, 0, \
0, 3/4M, 0,
C= ; Myz=2I,-J, and 0, are square (21)
0 0 0 matrices of order 2.
0 0 0
Since C is a diagonal matrix with quasi-idempotent vlements along the diagonal, the A is
computed directly as
3/8M, 0, 0,
0 1/3M 0
2 2 2
c'= (22)
0 0 0
0 0 0

Suppose we are given the vector of responses (cf. section 3.1)

Y' = (Y111 Y112 Y211 Y321 Ya21 Ya22 Yazs Ysar)-

Then the treatment and block totals are given by

i
3
- . - .
\
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3
E

E:
@
y
Ty =y + Vg By = ¥y +¥yy2 + Yan /
T =¥ By = Y391 + Va1 + Y422 + Y423 j
3 Ty=y By=y :
3= Yan 531 :
3 (28) 3
i Ta = Ye21 + Ya22 + Ya23 3
3 3
Ts = yg3
TG = 0 2
4 ;
i‘ Then the vector of adjustec treatment totals Q is given by
; _ 4 _ ;
g T, -2/3B | (/3 (Vi1 + Y2 = 2 Yany) ;
: Tp-173By | [1/3(2¥yyy - Y112 - ¥111) ;
=
“‘ S
g T3~ 1/4B, | 174 (3 ¥30, = Yao1 = Yerr = Yaoa) 3
g 3 2 321 = Y421 ~ Ya22 = Ya23
- % Q=T-LK!B= = (24)
. Ta-3/4By| (174 (Yap + Yazm + Yaz3 - 3 Yaz)
3 »ia, Ts - Bs 0
:
g{ E
f o | L 0 i
8
b ;
¢ The minimum variance unbiased e=timate is then given by 3
ix
; :
: - :
¥ 174 (yy11 + Y112 - 2 ¥a2y)
5
fg =174 (y111 + Y112 = 2 ¥239)
g - 176 (3 ¥331 - Ya21 - Yag2 ~ Y423) *
] t-co- ) |
g; = 176 (3 ¥3p1 - Y421 - Y422 = Ya23)
E
: 0
r:’ Z
L 0 _ 3

il ‘,WL\-

The estimation of the main effect and interaction terms follows the discussion of section 4.2.
The 22 - 1 = 3 effect terms are ordered lexicographically as

»

s

s

22

X; =(10): main effect of factor A,

3
3
]
3
—
4
3
{
]
E
i

X, = (01): main effect of factor A,

X3 = (11): two factor interuction A, A,
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In accordance with eq. (13), the minimum variance unbiased estimate for each vector X; is
given by
¥ - - _1
By =M Erluycie i
: i
2 For X, = (10), one gets 4
3 ;
! - ;
1 a8 (1) 2 2-1-1-1-1 i
: . . 1 - - :
= = - 1 t = - - - - 7
E B (Xp) = |8y ()] == My 1) 1/6 (-1 -1 2 2 -1 -1]¢t :
i 5, (3) “1-1-1-1 2 2 3
26 4
- (26) 3
2t 428, -t~y -t - 0 3
:; =-El—€2+2§3+2§4-‘55~€6= 0 F
: -t -t -t e28428] |o
1
3 3
It will be shown below that the main effect of factor A, is totally confounded with blocks—
hence, this null result for &(X;). For X, =(01), we get 3
3
3 &, (1) . MF1-1 1-1 1-1 3
a (X)) = =;[1§xM2]E=1/6 t ;
-3, (D) -1 1-1 1-1 1
(27)
A (172 (Y111 + Y112 = 2 Ya21) + 1/3 (3 Y391 = Va1 = Yaga = Ya3) ]
a (Xz) = p
_ -8, (D 1
, f
Finally, for x = (11), we get utilizing the constraint eq. (10) k
B N (2 -.2-1 1.1 1]
. b
-~ d, (1) -2 2 1 -1 1-1 3
g5 (21) -1 1 2 -2-1 1
a(X) =8 ©8,= =(\_1,_) (Msxm2)§= t (28) ;
- By, (21) 1 -1-2 2 1-1 ]
- 8y, (11) = 8y, (21 11 -1 1 2-2 L
[+ 855 (11) + 8y, (21) | | 1 -1 1 -1 -2 2]
]




1t is readily verified that

E 815 (11) = (Yay + Y112 = 2 ¥a2p) + 1/3 (3 Y31 - Yao1 - Yazz = Yaz)

3 and

2

3 : 81 (21) = = 1/2 (¥y11 + Y132~ 2 ¥221) + 2/3 (3 ¥301 = Y4231 = Y422 - Ya23)-
H

Hence the v ~ 1 = 5 elements of the a(X) matrix of section 4.3 are given by

B (X) = [a) (1) 2, (2) a, (1) 8y, (11) a;, (21)], {(29)

s

with minimum variance unbiased estimates as given above. The corresponding M(X) matrix is
given by (cf. section 4.3)

[2 2.1 -1 -1 -1] [Wex))

-1 -1 2 2 -1 -1
M= 1 -1 1-1 1-1{=MX) (30)
2-2-1 1-2 1

-1 1 2-2-1 1 _:ﬁ(xgj

Now, sincerank C = (v-2z, ~z, =2)< (v-1=5), there exist z, +z, - 1 = 3 additional re-
lationships among the elements in a(X) that are determined from constraint equation U’t =0,
In accordance with section 3.4, the constraint matrix U’ is given by

R I TSI AIN o #h7e ot SNV TG0 09 S S S O A o PR sSSP

11 00 00]
00 11 00
U’ = (31)
00 00 10
|00 00 O1]

Using equation (9) and (10) we can write the vector of treatment effects in terms of the treat-
ment combination parameters as

31
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[ a, (1) " [ a, (l)" [~ a,, (11) 7]
a; (1) -ay (1) - a;,(11)
_ a, (2) ) a, (1) ) a;, (21) (32)
8, (2) - a, (1) - a5, (2D
-ay 1) -a; (2) ay (1) - a;5 (11) - a;, (21)
] t 8y (1) - 8y (2) L- a (| [+ 212 (A1) + 2y, (21)

We get from U't = 0 after reduction

a,(1)=a,(2)=0

(33)
8y2(21)= 8, (1) - a;, (11)
Hence, the v - z; - z, = 2 estimable parametuers that make up the a (X) matrix are
3 (X) = (8, (1) a,, (11)]. (34)

The minimum variance estimates for the elements of E(X) are given in eq. (27) and (28). Re-
taining the rows of M(X) associated with the two elements of (X) there results

1 -1 1 -1 1-1] [M®X)
(X)= = (35)
2 -2-1 1-1 1] My

=l

The aliasing and confounding is determined from eq. (33). Using definition 3, section 4.4, and
the first equation of (33), the main effect of factor A, is found tc be completely confounded with
blocks. The second relation in eq. (33) reveals through definition 2 of section 4.4 that the two
factor interaction A; A, is aliased with the main effect of factor A, as well as with itself.

The variance-covariance matrix for the independent estimable parameters is given by eq.
(20).

_ Var & (X;) Cov [3 (X,). 3 (X))
M) C* M (X) = = = =
Cov [a (X,), & (X;)) Var & (X,)

2
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Using eq. (20) and (36)

= _ = 17
2(Xy) = Var a (X,y) = 516
@7
E (Xa) = Var § (X3) = .1%28_
Using eq. (34), (20) and (37), the effect sums of squares are now computed as
Y = -1% _216 22
SS(a(X))=a' (X)) X)) "a(Xy = 7
(38)

S5 (a (X)) = 3 (%) E 17! & (%) = 2 a2,

where 5.2(1) and 5.12(11) are evaluated in eq. (27) and (28), respectively.

We note in eq. (36) that the covariance between the effect terms A, and A;A, is not zero.
Therefore, the design is not orthogonal, and the sums of squares in eq. {38) cannot be expected
to sum to the sums of squares for treatments, t’'Q. Finally, from section 4.3, the analysis of
variance table is evaluated as

Source Sums of Squares d.f.
X,: maineffectof A, | SS(a(Xyp))= —211—: (a,a)) 2 rank 3 (X,) =1
X;: interaction A, A, Ss(a(X3)) = 1—:; fa;,(11)) 2 ank > (X3) =1
Blocks B'’K! B b-1=2
Error Y'Y-1'Q-B'K!B w-rank C-b =3
Total Y'Y - G¥/w 7

The following two examples have been extracted from Davies'® and Zelen.!” The solutions
are given in abbreviated form somewhat in the form of the output of the computer program
available for this analysis. Hopefully, the detailed solution for the prior example will be suf-
ficient to make clear the brief annotations to these examples.

They are included here to facilitate the relating and contrasting of the solutions using the
methods of this paper to those using other possible techniques.

]6Doviu, O. L. (1957) Design and Analysis of Industriol Experiments, Hofner Publishing Co., New York, 466.
7Z-lon, M. (1964) Applications of the Calculus for Factorial Arrangements 1l: Unequal Numbers in the
Analysis of Variance, MRC Tech, Summery Repirt 411, LS, Army Math. Res. Center, Univ. of Wisc.
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Example 2: One-half Fraction of 2° Design, Davies !°

Number of Factors (n) =5 Number of treatments (v) = 32
Factor (A,)/Levels (m,) Number of Blocks (b) = 4

A, 2

A, 2

A, 2

A, 2

A, 2
Treatment Treatment Combination Generalized Vector of

Label (ol ool ok ) Incidence Matrix (L*)' | Observations (¥)

2 11112 0001 Vi e, =705
3 11121 1000 Yiin = 819
5 11211 0010 Ys. 31 =593
8 11222 0100 Yoo =878
9 12111 0100 Yo ., =756
12 12122 0010 Vin.3.y =745
14 12212 1000 Vieyy =785
15 12221 0001 Yis a1 =851
17 21111 1000 Yir.4.1 =625
2 21122 0001 Yi0.4.q =135
22 21212 0100 Yig 4.4 =025
23 21221 0010 i ¥y g =66
26 22112 | 0010 | ¥.3.1 =666
27 22121 0100 Y21.2.1 =841
29 22211 0001 Y20.4.1 =628
32 22222 1000 Y3211 =732

R*=I,6' sK=4lg52,=42,=16

t Troatments labeled, i,4,6,7,10,11,13,16,18,19,21,24,25,28,30, and 31 are missing from the
experiment.

L* = L, with rows corresponding to missing treatments deleted.

R* = R with rows and columns corresponding to missing treatments deleted.
C*=R*-L*K™' L”

3 14 - (Iz - '2) Ay (12 - .]2) 12 < (Iz - Jz) (12 - 12) X I2
c* - 1 (I =T« (I =1y 31, (I, - I 1, I < (15 - 1)
4 sz (12'12) (12‘.‘2)\ 12 314 - (Iz"'.]’z)" (12'-12)
(Ip-Jp < Iy Iyx (I - J2) R PR RN S P PY) 31,

C* is idempotant; C*' = C*

Q*' = T*-L*K"'BJ’ =% [111,315,-298,412,-76,320,179,415,-461,~49,-600,-36,4,264,-477,~33)
tx=C** Q*=Q*

Rank C=v - z; - z, = 12 = degrees of freedom for treatments

SS(t) = t*' Q* = 96951.5 - i’ Q = treatment sums of sqaures

Note: 1. The starred vectors (matrices) are the unstarred counterparte with rows (rows and columns)
assoclated with missing treatments deleted. The deleted rows (rows and columns) contain
zero elements only.

2. Subscripts on partitions of C* denote the dimensions of the indicated square matrices.

wDovios, 0. L. (1967 Design ond Analysis of Industrial Experiments, Hafner Publishing Co., New York, 469.
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3
2
b
3 ] SAar = < - 3 ‘;'
3 E,: aX) = MeX)t*/v = M(X)t/
3 K Levels of Interaction Eifect Vectors
i }q Fl.ctots ':
> g}-'t f - - -~ - v
[ 4 &, 2 a, 84 a5 ;
4 ¥
- 4 1 sl mefal  aerfa]  sezfal s 3
; i 2 16 |1 16{ 1] 16|-1 16| 1 16 1 0 ) . 3
4 -3 1
1 H - - s . . R . a,(1)
t 8 811 814 By 824 By Bys a,(1)
: -1 r .1 or A - - a, (i
4 : 1 1] 41 1 4] [ 1] 1 o :1; ;
i : 12 711 usl 1) 18} -14 78f 1y 68} 1 g4l -1] 1631 1 a Q1)
E & 21 16{-1 16| 1| 16} -1| 16] 1| 18] 1| T6f-1] 16} 1 22an 4
3 ; 22 1 ~1 1 | -1 -1 1] -1 a a1)
. . - - - - - T - 14
1 . . ) . R . A a,, (11)
3 i{ 82 a5 Ry 334 2,35 845 8345 8,5 (11)
X - "1 ) f L r ) i 854 (11 3
E : 111 1] -1 1 1] [ 1 -1] o :u; ,
3 i 112 -1 1 -1 -1 1 -1 1 a.(11) 3
{ 121 -1 1 -1 -1 1 -1 1 a.(11) :
F i 122 163} 1 84-11 68| 1} 78} 1| 18} -1 M9} 3} T 1) o ) 0 3
4 { 211 16] .1 16| 1| T6[/-1] 16| -1 16| 1| 16]|-1]| T6| 2| ®% :45((1;1) 3
: 212 1 -1 1 1 -1 1 -1 123 i
i 8,44 (111) )
. 221 1 -1 1 1 -1 1 -1 a:” 111) :
% - - - -
:‘;. 222 L 1_ L 1 p L 1 § L 1 B L 1 J L 1 . L 1 a:J‘ (111)
; . - - ~ - a .. (111)
Ry Byass 8208 Bims 8345 g:?: (11)
= _ _ N A L _ - &%
% 1n 1 1] -1 1 -1 Base ﬁii;
; 1112 -1 -1 1 -1 1 2% 113y :
: 1121 -1 -1 1 -1 1 2" a11) ;
I - - 45
: ot a|l |- : a 3 1224 G111 ;
. . 3,255 (1112) f
1 1212 1 1 -1 1 -1 f
£ 1221 1 1 -4 1 -1 21245 (1111) 3
= y - a344¢ (1113)
E 1222 86{-1| 40z] - 107} 1 1491 -1 it 23545 (1111) ;
E 2111 16|-1| 16| 15| 1 16| -1 ©l 1 o E ) ]
g 2112 1 1 -1 1 -1 | Pr234s s j
«g 2121 1 1 -1 1 -1 3
é 2122 -1 -1 1 -1 1 3
z 2211 1 1 - 1 -1 £
& 2212 -1 -1 1 -1 1 3
E 2221 -1 -1 1 -1 1
%-; 2222 L 1) [ 1] L -1 | L 1 | -1
%
23 Byy T8y =By =By, T8y, T8y TRy, are 2ero vectors
iToberead a,' =(a,(1)a, (2)! =§-:—§ 1,-1j = .2L7,-21.7] %
*t M*(X) i8 formed by deleting columns (ouly) of M(X) assoclated with missing treatments. 1
35 3
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Constraint Matrix U':

Formed so that U't = 0 yields:

- S L T T R, TORGTRE YT e
GRS TR TR R & AT BT AR TR M

Dependency Relationships found from:

U't= UXZ (a)

c-*ay(ey) =0

Szl Za‘ =3
ty4ty, +t, +t, =0
tg+ty +t,, +t,, =0
tytt, b, tt, = a, 1) =0
t2 +t15 +t20 +t29 =0 325 (11)=O
Y=ty =t =t =ty =8 =ty =t =0 a35(11) = 0
bia Tt =hy Tty Tty =ty =ty =t =0 8,3 (111) =-a,5 (11)
Factors Confounded a, (11)=0
Factors/Aliases With Blocks
. - a,, (111) = -a;,(11)
a,0) | A,  AAAA AA,
8,34 (111) =0
a,(1) A, AAAA AAq
a(1) | A, AAA A AA, 2,35 (111) = -a,, (11)
a,1) | A, ALALAA, AAA, a,, (11)=0
as(1) Ag AA A A AAA,
ap 1) AL, AAA AAA, 844 111) = -8, A1)
a=la,; (1) AA, AAA AAAAA 8, (111) =-a , (11)
B AA AAA 8,,5(111) = -2,,(11)
ais(11)] AAg AjAzA
2,,(11)| AA, AAA U345 111) = -2,,(A1)
250 (1] AA,  AAA 8 yg3¢ (1111) = =a(1)
R0 AA,  AAA,

8,,35(1111) = - a (1)
8,45 (1111) = ~a, (1)

a,.,5(1111) = -a, (1)

2,45 (1111) =-a, (1)

85545 (11111) = 0




1
Variancse~Covariance Matrix /‘Bi

Var 8, (1) 3
1
var &, (1) 0 E
g st _ 1 1
V/io2:=3% = 3 Ip= - §
v 0 Var 354 (11) ;
i Var a, (11) 3
: ;
3 Design is orthogonal.
3 i;‘ = = -1 =z
: 5 ssfafx. Y] =a'(x.\ = (X, a(x.} =a2(x. ) 64
; P )] () T ) B (n) B2 x) ;
4 =12 ...,12 ;
f freedom for a - T(x)-= |
; Degrees of freedom for a (x'i) Rank & (X‘,) 1 ;
gﬁ Analysis of Variance Table 3
j
é Source of Variation Sums of Squares Degrees of Freedom
3 ]
En A, 30102.25 1 :
; A, 5550.25 1 3
A, 2862.25 1 :
: A, 40401.90 1 ;
5 A, 1849.00 1
g i
é‘ AA, 1482.25 1 ;
f: AA, 3540.25 1 "
:f AA, 81.00 1
3 AA 1521.00 1
) ALA, 1156.00 1
i AA, 1764.00 1
AA, 6642.25 1
Blocks 26564.25 3
Total 123505.75 15

t Rows and columns of V associated with elements of :.
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L EXAMPLE 3: A3 x 2 x 2 FACTORIAL WITH UNEQUAL NUMBER, ZELEN'’
i Number of Factors (n) =3 Number of Treatments (v) = 12
: Factor (A, )/Levels (m ) Number of Blocks (b) =1
] 1
E A 3 3
3 A, 2
E A, 2
: Treatment Treatment Combination Generalized Vector of ]
t Label (1izeds) Incidence Matrix (L) Observatiors (Y) f
11 1 Yy, =5
2 112 1 V2u0 = ® ‘
3 121 2 Vi, =10
ys.x.z =12 :
4 122 2 Vo, =13 !
y4.1.2 =17 3
4 5 211 1 sy S 9 3
4 6 212 1 Veiq = 9
7 221 1 Yoia =17
8 222 2 a1, =14 ‘
Yoo =16 -Z
9 311 3 Yo, = 9
Y6.1.2 =13 =
Yo1,3 = 8
10 312 1 Yi0.1.1=10
11 321 1 Yiaa©
12 322 1 Vis 1, =12
R=diag(112211123111)
K=17 :
z,=1;2,=0

"Zelen, M. (1964) Applications of the Calculus for Factorial Arrangements [l: Unequal Numbers in the Analysis
of Variance, MRC Tech. Summary Report 411, U.S. Army Math Res. Center, Univ. of Wisc.
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[ 171,
- 2.]2
= J3x2

- 214

C is not idempotent.

[ 8641,-85],
-85, -

- 491

- 3714

-85 -
- 85 J3x2

| . - ~Inv = -_.G. ’
Q =(T - 1X"!B) —(T 17L)

1
17

-1, -25,

= 2J3x2

A
- 415

- 615

=2 J3x2

-497],

4321, - 13],

49 .T3x 2

- 131

_lé

49 J3.

(-96 -96 12 148 -28 -28 -62

=Jaxs
= 2J3

171, - J,

- 213
- 315

-I3

85Ty, 3

‘49]2,(3

864 I, - 85 J,

- 4913

- 3714

-85],

148 -33 -11

t=(C*'Q)'=(5 -5 1 5 -1 -1 -3 5 0 0 2 2)

Rank C=v -z, - z, = 11 degreas of freedom for treatments

Ss¢t) =t’ Q =163.882

-6

(- 21,

.- 612)

1 =61y

2 =31y

-6

42

- 31,)

(" 4912: - 37 12)

(- 131, - 1)

(- 491, - 371,)

419

299

(- 4915 - 371,)

23)

T B Y T T T T T T e e

~Jaxa

- 313

171 - J |

~85]J,.3

-497,, 3

- 491}

- 3713

8641, - 85 J, |
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Levels of
Factors

-

20

11
12
21
22
31

Interaction Effect Vectors

a, 8, a,
-1 [«2] [—1]
0 2 1 |
1
4y, 843 8,3

A RN

¥ ORI e T RIS TR ST RN N Y

a(X) = MX)t/v
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113 -58 13 1 28 -22 -1 =10 7 -7 2
122 4 10 -22 14 =10 8 -2 2 -16
59 =7 -5 4 7 -2 -1 1 10

56 7 -2 -5 4 5 13 4

113 =58 -7 2 1 -1 -10

122 2 -16 10 -10 8

113 -58 13 23 -22

122 4 -22 14

¥

NSV oy

S
<l
~
qQ
N
1
Ml
-
1t
3
[« 1
E~Y

" e e S

IO e 5 YA
[}
{7~}

[y

[ 1

w o
1N

-58
B 122

Design is not orthogonal.

Degrees of freedom for =5'.()(”) =Rank§ (xl’)

; Analysis of Variance Table

‘\ Source of Variation Sums of Squares Degrees of Freedom
E A, 10.114

¥ A, 58.576

k A, 14.644

E AA, 30.591

AA, . 9.368
AA 14.644
AlAzA 3 9.368
Error 26.000

Total 189.882
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